R R R R N .

AD/A-005 412

AUTOMATIC PROGRAM VERIF{CATION I1I:
VERIFYING PROGRAMS BY ALGEBRAIC AND
LOGICAL REDUCTION

Norihisa Suzuki

Stanford University

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

December 1974

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE

D e amcasm .. T SR AR TR A S R R e,

1 -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
REPORT DOCUMENTATION PAGE B, A g
1. REPORT NUMBER T2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-Th=4T73 4/
4. TITLE (and Subtitle) s. € OF REPORT & PERIOD COVERED

AUTOMATIC PROGRAM VERIFICATION II: VERIFYING technical, December 1974

PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION. 6. PERFORMING ORG. REPORT NUMBER
STAN-CS-T4-473 .
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Norihisa Suzuki DAHC 15-73-C-0435
(3. PERFORMING ORGANIZATION NAME AND ADDRESS 0. —:30:2'?30:&‘:-3_5:.;.&‘%;5%7. TASK

Stanford University
Computer Science Department
Stanford, California 94305

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARPA/IPT, Attn: S. D. Crocker December 1974
1400 Wilson Blvd., Arlington, Va. 22209 3. NUMBER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of thia report)
ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165 Unclassified
Stanford University T5a. DECL ASSIFICATION/ DOWNGRADING |
Stanford, California 94305 i

g s e
16. DISTRIBUTION STATEMENT (of this Report)

L E e L T At et o e w
DISTRIBUTION SIATEMENT A

Releasable without limitations on dissemination. Approved for public release;
Distribution Unlimited

e — e —— o ————— Oy g

'; DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springlield, VA. 22151

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If ne y and 1d fy by bdlock ber)

Methods for verifying programs written in a higher level programming language
are devised and implemented. The system can verify programs written in a
subset of PASCAL, which may have data structures and control structures such
as WHILE, REPEAT, FOK PROCEDURE, FUNCTION and COROUTINE. The process of _
creation of verification conditions is an extension of the work done by
Igarashi, London and Luckham which is based on the deduciive theory by Hoare.
Verification conditions are proved using specialized simplification and
proof techniques, which consist of an arithmetic simplifier, equality (continuéd)

DD , %%, W73 eoimion oF 1 nOv 68 1s OBSOLETE 4 ()

UNCLASSIFIE L
s SECURITY CLASSIFICATION OF THIS PAGE (When tered)

S R ™

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entared)

replacement rules, fast algorithm for simplifying formulas using proposi-
tional truth value evaluation, and a depth first proof search process.
The basis of deduction mechanism used in this prover is Gentzen-type
formal system. Several sorting programs including ¥loyd's TREESORT3

and Hoare's FIND are verified. t is shown that the resulting array is
not only well-ordered but also g permutation of the input array.

[0/

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY DECEMBER 1974
MEMO AIM-255

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-74-473

AUTOMATIC PROGRAM VERIFICATION II:
VERIFYING PROGRAMS BY ALGEBRAIC AND LOGICAL REDUCTION

by

Norihisa Suzuki

ABSTRACT:

Methods for verifying programs uritten in a higher level programming language are
devised ancd implemonted. The system can verify programs written in a subset of
PASCAL, whick may have data structures and control structures such as WHILE,
REPEAT, FOR, PROCEOURE, FUNCTION and COROUTINE. The process of creation of
verification conditions is an extension of the work done by lgarashi, London and
Luckham uhich is based on the deductive theory by Hoare. Verification conditions
are proverd using specialized simplification and proof techniques, which consist
of an arithmetic simplifie~, equality replacement rules, fast algorithm for
simplifying formulas using propositional truth value evaluation, and a depth
first proof search process. The basis of deduction mechanism used in this prover
is Gentcen-type formal system. Several sortirg programs including Floyd's
TREESORT3 and Hoare's FIND are verified. It is shoun that the resulting array is
not only well-ordered but also a permutation of the input array.

This vesearch was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defence under contract DAHC 15.75.C-0435.

The vtew and conclusiors contained in this document are those of the author and should not be
inter preced as mecessarity representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the US Government.

Reproduced in the USA. Avauable from the National Technical Information Service, Springfield,
Virginia 22151. |})

~g

i Introduction

Venifying that programs work faultlessly is a necessity. We can test whether they work or not
in several cases. But unless we prove the correctiiess of programs, it is impossible to claim that they
endure lorg lasting usage. Since proving by hand is cumbersome and not always free of errors,
mechanization of verification is strongly desired.

Some atcempts have been made to verify programs mechanically [11{23,[101{11], but there are
several problems which must be solved in order to make automatic verification of pregrams
practicai.

First, we have to find a way to express assertions more easily. Most of the previous verifiers
require assertions to be written in first order predicate sentences with a fixed number of predefined
predicate symbols and function symbols. But this 1s 1n many cases inconvenient and infeasible. For
example, If we have to deal with the correctness of programs with complex data structures, we need
to express properties in higher order sentences. Thus, many complex programs have not been
verified because the assertions about programs have not been properly stated. g

Second, we have to find a better way to prove verification conditions automatically. Proving
verification conditions using a general automatic theorem prover is in most of the cases
unsatisfactory. If we are verifying programs in specific domains, we can use special properties of
functions and predicates to construct fast special purpose provers. King[10] and Deutsch(2) have
succeeded by using a built-in simplifier for integer arithmetic, but these programs still cannot cope
with other domains.

In most ve:ification systems the user must specify 10t cnly input and output conditions but
also loop nvariants. Although 1t 1s an undecidable problem to generate loop :nvariants, the system
should aid the programmer in constrizcting loop invariaats. Also, programs with complex data
structures and complex control structures must be verified, including parallel programs.

In this paper we describe a fast simplification and theorem proving facility that is a new

component of the Stanford PASCAL Verification System described by Igarashi, London and

Luckham in [9] This system pernuts the programmer to formulate the semantics of his data

? structures, procedures, and functions in simple, natural statements. These statements are used by the
system as cimplification and special theorem-proving rules during verification. So programs
computing over any domain can be dealt with easily.

As an example, automatic verification of a sorting program s studied in detail. It is shown

!
that not cnly 1s the resulting array ordered but also it is a permutation of the input array. The
verification of Floyd's TREESORT program and Hoare's FIND program are listed, both of which
are verified within a reasonable amount of computation time. Because these programs are complex,

! and use data structures--in this case an array data structure, whose semantics has not been studied
well--they hiave been considered as one of the big challenges for automatic verification. Thus our
method of verification 1s very promising for practical use.

’

?

’

’ 2

i

o e P R T I g g - Sl i

il e

1I. Expressing Assertions by Structured Definitions.

Here, we make a few comments about how the user of the system might construct
documentation in a way that aids the verification of his program. The main idea is to use defined
concepts that are close to the natural concepts employed in creating the program.

As 1s dis:ussea in the previous section, it is impossible to state all properties of programs in
first order sentences with fixed number of predefined function symbols and predicate symbols. As an
example let us examine the process of verifying sorting programs. Suppose a program S accepts an
array A and sorts it and output it as an array B. Then, the correctness of S is expressed in terms of
properties that eclements of B are ordered in ascending(or descendinglorder and B consists of all
elements of A and of nothing else. The first property can be stated as

Y1.(1<1sN-1oB 1) <B(1+1)).

But one way to describe the second property s to state that there is a one-to-one mapping from
elements of A to elements of B. That is the sentence

IF. (VDL (1<t <NoL<F (1) sN) AV, Ju (1€l <«JsNoF (1) =F (J)) AYIL (11<NDA 1) =BIF (1)]))
expresses the second property.

But previous verifications of sorting programs, either manual or automatic, have dealt with
only the first property. The detailed study of FIND by Hoare(7] briefly explains that to prove the
correctness 1t 1s necessary to show that the second property holds, but does not formally verify it. He
thought that the assertions were not obvious and the proof would be tedious. It is certainly
disadvantageous to introduce second order sentences because they require complicated proof
proceduies. But since it 1s essential for the automatic verification to prove the second properties
formally, we have to invent a way to venfy them.

The way to avord using second order sentences is to extend the language by introducing new
symbols. There s also another nice thing about introducing new symbols. To express that array B is

a permutation of array A, we have to employ a rather complex sentence. It might be as difficult to

understand what it means as to understand what the program does. Also it 1s very easy to introduce

errot-. But we can avoid complexitites by writing

Permutation(B,A).

In general there are two methods to introduce new symbols. The first method is to assume the
new symbol as a shorthand representation of a sentence represented by already defined symbols. The
second method is to define symbols by axioms stating the properties of these symbols. For example,

after defining axioms of propositional calculus consisting of symbols ">" and "7, we can introduce
"A" symbol as a shorthand notation for ~(A>-B) . But also we can introduce it by axioms,

AnBoA, AABOB and A>(B>AAB).

Assertions describing a program can be structured top-down by using new symbols. Their
meanings are refined succesively until everything 1s well-defined. An analogut's concept can be
found in programming. We can enrich the language and clarify the meaning by introducing new
symbols (operations). These new operations are defined either by macros or by procedures. Macros
define new operations by using already defined concepts. So they do not give more computation
power but clarify programs. Whereas, procedures can define new operations recursively, so that they
give new power.

Following this analogy to programming, we can call the way we write predicate sentences with
newly defined symbols a structured way of expressing 2ssertions. A detailed study of how to
introduce new symbols 1s in section V, and also is found in the work by von Henke and
Luckham(5].

In the case of "Permutation(B,A)”, we could define it as the shorthand representation of *he
previous sentence. But instead we shall define it by a set of properties (specifications) including the
following axiom,

vA, 1, J.Pernutation{Exchange(A,1,J},A),
where Exchange(A,1,J) 1s a function mapping an array A into an array resulting from
exchanging I-th element and J-th element of A. In addition, Permutation 1s an equivalence relation,
so we must include axioms for symmetric, reflexive and transitive properties.

We have replaced a second order statement by a relation which has arrays as individuals.

Now, arrays are a second sort of individuals.

Thus, we need to have a special semantic definition for array assignment, since arrays as well

as array elements occur in assertions.

NOTATION <A,1,E>: An array obtained from A by piacing E in the i-th

position.

ARRAY ASSIGNMENT AXIOM
P(<A,1,E>) 1ALII<E} P(A).

: III. Documentation Statements and Their Use.
s

Introduction of new symbols 15 essential to verification for ease of both representation and

undersianding oi assertions. We allow users to introduce new symbols by documentation in the form

of thiee simple kinds of statements. They are used by the prover as (i)rewriting rules to expand new

symbols, (1) reduction strategies which state that some expressions are reduced to others under

specified conditions, and (1n)goal-subgoal strategies which state that certain well-formed formu'as are

tru o af certain others are true. We found that they are conventent and powerful.

From the method of construction of verification coi.ditions [5)6).07)[9), all the verificatior

conditions are of the form
Aln...AAN = Cla...ACH,
Since this form of representation 1s more natural for understanding than disjunctive normal form,

we retain this form throughout the proof. The)roof procedure 1s based on Gentzen's formal system.

Thus, the vahdity of each Cl 15 proved with the assumption Ala. .. AN,

We first explain a special pattern matching language, in which all the documentation

statements are written.

1. Pattern Matcluing.

A pattern 1s a string of symbols which match a term or a well-formed formula. Patterns consist
of pattern constants and pattern variables. A pattern constant 1s an identifier and a pattern variable
ts an wdenufier preceded by a symbol "a". So eX stands for a pattern variable. Under the pattern
matching mechanism, a pattern constant matches only that symbol and an unbound pattern variable
matches any term and is bound to that term thereupon. A bound pattern variable matches only the

corresponding term

Higher order pattern matching 15 undecidable in general. So, i1n this algorithm a term with

unbound pattern variables 1s not matched to a term with unbound pattern variables. But still this

restricted matching algorithm is ambiguous. For example, if a pattern P (eX) is matched to

|
|
|

Q(F(A)), both ©P=0, eX=F(A) and eP=Q(F()), eX=A are pernussible bindings. This ambiguity
s costly in computation and should be avoided If possible. Thus, in this system we employ an
icomplete but decidable procedure. The matching is done from the outer symbols, and from left to
right among parameters. So @P (eX) matches to Q(F (A)) and yields eP=Q and eX=F (A).

The himited facility has not caused much inconvenience. Since higher order sentences can be
translated to first order sentences by introducing new symbols, all properties can be expressed in first
order sentences. We are going to see that the p;attern matching does not cause much inconvenience
in the case of data structures either. Suppose A and B are both arrays. If we match eX[eY) to
AIBLIT], we get @X=A and aY=B[l]) by our matching algorithm. But we do not want the bindings

of ®X=A[B[1] and -Y=1, since AIB[1) 1s not meaningful.

2. Rewriting Rules.

We can use TEMPLATE statements to introduce new symbols as shorthand representations of
already defined expressions.

TEMPLATE <pattern> « <expressions,
Then, a rewriting rule is created from this statement. The system replaces every occurrence of
<pattern> by <expression> according to the rule.

If we want to introduce

Ordered(A,],J)
as a shoithand representation of

YX (ToXeld o A 2AIX+1]),
then we can write

TENPLATE Orderedl(eA,el,ed) « VX, (1sX<d o AIXI<A[X+1]).

3. Reduction Strategics.
Also, we can Introduce new symbols by a set of axioms. These axioms can be stated by
AXIOM statements and GOAL statements to produce reduction strategies and goal-subgoal

strategies respectively.

We can specify reduction strategies to simplify terms or weil-formed formulas. These strategies

e e

R T R T ea——— - » S—

are of two kinds, one 1s an unconditional reduction and the other is a conditional reduction.
Unconditional reduction strategies can be fed into the system by statements of the form
AXIOM <pattern> « <expression>,
The effect of this strategy 15 to reduce any expression which matches the <pattern> to <expression>.
The <expiession> may have identifiers which appear in the pattern as pattern variables. They are
bound to some forms by matching. For example, one can represent one of the axioms of list data
structures,
¥X,Y.CAR(CONS (X, Y)) =X,
as a simphtication rule,
AXI0M CAR(CONS (e, @Y}) «X.
Then P(CAR(CONS(A,B)} 1s reduced to P (A) since eX 1s bound to A. Only universally quantified
equality or equivalence relations can be represented by this method.
Conditional reduction strategies are specified to the system by statements of the form

AXIOM IF <pattern 1> THEN <pattern> « <expressions.

The effect 1s to reduce expressions which match <pattern> to <2xpression>, If <pattern 1> is
provable by the system. Some pattern variables of thie <pattern 1> become bound when
<pattern> 15 matched. If the <pattern 1> does not include unbound pattern variables, the
validity of the tentence

Aln...nAN = <pattern 1>,
15 checked by recursively activating the prover. If the <pattern 1> includes unbound pattern
variables, 1t 1s tested whether 1t matches the antecedent part of the verification condition or not. If it
matches then we consider <pattern 1> to be provable and otherwise not provable.

For example,

VX, Y (XsYAYZXDX=Y)
15 a valid statement. We want to incorporate this fact into the system by conditional reduction, and
reduce Y=X to X=Y if X<Y holds. The statement we should write 15

AXIOM IF X<Y THEN a@Ys@X » XaY,

Then If we are to reduce the statement

AzBAB<AAP (A) P (B},

B
!

T LT ==

.

" o P T T I o PP BT R sy L T

R R B T S S —
R I R TS Sy mm——

the pattern matches to A<B to get bindings eY=A and @X=B. Since there is no unbound pattern
variable, the system sets up a subgoal B<A, and tries to prove

B<AAP (A)oB<A,
which 1s valid. So the statement is reduced to

B=AABzAAP (A)oP(B),
which will be proved to be vahd by equality substitution. As the previous example shows,
universally quantified theorems can be represerited by this statement. But also some existentiaily
quantified theorems can be , epresented.

For example

YXA3Y.P X, Y)or (X) =G (X))
can Le represented by a statement

AXKIOM TF P(X.@Y) THEN F(eX) « G(X).

4. Goal-Subgoal Strategies.

Reduction strategies turt vui to be important components of proof. It is a frequently used
proof step. However, we rely heavily on additional goal-subgoal strategies to complete many
verification proofs. Verification conditions are of theé form

AlA. . nAN = Cla...ACH.

The problem 1s to prove each CI. If we can prove BIoCl and Ala...AAN-BI, we can deduce
Ala...AAN-CI by modus ponens. Thus, if we have an axiom BIoC| the subproblem we have to
solve i1s

AlA,..AAN - BI,

This fact 1s the motivation fcr employing goal-subgoal strategies.

Statements to specify strategies are of the form

GOAL <pattern> SUB <pattern I>, .., <pattern n>.

The strategy constructed from this statement works as follows. If «<pattern> matches to the
consequent Cl, each <pattern j> 1s tested successively unti! one of them 1s provable. If <pattern
j> has unbound patte'n variables i is tested to determine whether 1t matches one of the con juncts

of the antecedent. If <pattern j> has no unbound pattern variables, a new subproblem

e HeTa—w

R SR e

- I e ——— ST PR pe——
PR v —— - . - - i r 3 .

e e

'\
AlAa...AAN = <patter: j>
l ' is tested by recursively activating the prover.
t For example, the transitivity of "s” is defined by an axiom
VX, Y. (32, (X<ZAZ<Y)oXsY),
This 1s represented by a goal-subgoal strategy,
I . GOAL eXseY SUB XseZreZsY.
| In order to prove a sentence
AsBAB<CAC<D-AsD
} using this goal, first @X<eY is matched to AsD to obtain eX=A and eY<D. Then, the antecedent is
searched whether A<eZ matches one of the conjuncts. In this case the search is successful and yields
@Z-B. Thus, the remaining subgoal is @2<0, which is now B<D. So the new subproblem
AsBABsCAC<D-B<D
is set up. This can be proved by using the same goal one more time. These strategies can also
represent universally or existentially quantified theorems.
Everything which goal-subgoal strategies can express can be expressed by conditional :
reduction strategies, since we can express the statement
GOAL A 5UB 8,
by the statement
AXIOM IF B THEN A«TRUE. |
However, the system uses these statements in different ways. Conditional reduction strategies are
used to reduce expressions in both the consequent and the antecedent of verification conditions. For
example, suppose we have a conditional reduction strategy specified by ;
IF Al THEN A2 w C. |
then '
ALAA2 + B :
¥ 15 reduced to |

AlAC - B,

is reduced to

Al - C.

Goal-subgoal sirategies are used only to make reduction in the consequent.

The reason v.hy we have goal-subgoal strategies is that because they are more efficient than
conditional reduction strategies Most of the time we are interested in proving the validity of a
statement of the form A + B. Thus, we are interested in how B can be proved from A. Also the
antecedent A 1s usually more complex than the consequen’ B because the antecedent contains all the
information about data structures and control structures. So the goal-subgoal strategy gains ef{iciency

by limiting the reduction to the consequent part.

IV. Implementation.

This venification system s built upon the PASCAL verification condiiion generator
VCGENI9] First, files of the user’s Axioms and Goal statements are mput to the system, and the
corresponding reduction rules and goal-subgoaling strategies are constructed. This yields a special
reduction and proof system for the data structures and functions described bv these statements. The
system is extensible, since strategics can be added to handle larger domain of programs. Next, a file
containg the program with assertions is processed by VCGEN to produce verification conditions.
These are passed to the proving sysiem. The proving system is divided into several functions. They
are (1)the arithmetic simplifier, (ii)the equality substitution algorithm, (iii)the truth value substitution
algorithm, (iv)the unconditional simplifier, (v)the conditional simphfier, (vi)the goal-subgoaler, and
(vii)the logic symbol elimination algorithm.

Gentzen-type inference rule notations are used to express the effects of functions.

NOTATION : A B

c
where C is the goal and A and B are subgoals bc:h of which

must be proved in order to prove C.

(i) The arithmetic simplifier transforms arithmetic expressions into standard representations, and
simplifics them. The standard representation is a sum of products of simple factors. A simple factor
15 an arithmetic expression which 1s neither a sum nor a product. Then each product consists of a
coefficient(1f not equal to 1) followed by simple factors vw.ich are ordered by system-defined

orderings. And the sum consists of the ordered products followed by a constant(if not equal to 0).

(1i) The equality substitution algorithm handles verification conditions of the form

Anla=06)AB - C.

12

CASE 1. Suppose one of o or 8 1s a variable. Without loss of generality we can

? suppose a to be a variable. If B is a constant, a variable, or an
expression with « not appeariny free, then all the occurrences of a in A, B
and C are replaced by g.

CASE 2. Suppose one of « or 8 is a variable. Without loss of generality we suppose
c«to be a vaniable. If 815 an exprassion containing a, then all the
occurrences of 8 in A, b and C are replaced by «.

CASE 3. If « and 8 do not satisfy cases | or 2 then all the occurrences of « are

' replaced by g.

(1) The truth value substitution algorithm evaluates logical sentences. The grand rule of the truth

value substitution 1s

Tsubst (A, a)AanTsubst (B,a) + Teubst (C,a)

AnanB - C,

where both A and B may be null expressions and a 1s not a con junction. Tsubst (A, a) is defined by
the following set of functious, which give the value of A assuming o is true.
Tsubst(A,al=if a is of the form =8 then Fsubst(A,B) else
if o is of the form BAac then
Tsubst (Tsubst (A,B),¢) else
repltace all occurences of o in A by "Trus".
Fsubst(A,B)=if 8 is of the form ~a then Tsubst (A,a) else
if B is of the form ad>¢ then
Fsubst(Tsubst (A, a),¢) else
if B8 is of the form ave then

Fsubst(Fsubst (A,a),¢) else

replace all occurences of 8 in A by "False".

(1v) The unconditional simplifier applies all unconditiona! reduction strategies.
The algorithm works from inside cut. Thus if we want to simplify

R(P1,...,PN),
first all P1, ... ,PN are simphfied to Q1,...,QN respectively. Then R(Q1,...,QN) is simplified.

(v) The conditional simplifier applies all conditioral reduction strategies. The treatment is different
according to the position of the expression--in the antecedent or consequent of the verification
condition. Suppose a conditionai :eduction strategy 1s given to the systers by a s:atement
AXI0M IF <pattern 1> THEN <pattern> » <expression>,
and the verification condition to be proved is
Ala...~nAM =+ ClA. . ACN,
If <pattern> matches a subexpression of Cl, then
Aln,..AAH = <pattern 1>
becomes the subproblem to be solved.
Next, suppose <pattern> matches a subexpression of the antecedent say Al. Then
Ala...nAT=1nAl+1A. .. AAN o <pattern 1>
becomes the subpioblem to be solved. If it is valid tiien the replacement takes place as before.
The validity 1s checked by recursively activating the prover. So this is a depth first search,
and 1t might go into a wrong direction infinitely. So the system allows the user to specify the search

depth. If the search reaches this hmit, it is backed up until the last decision point.

(v1) The goal-subgnaler incorporates all goal-subgoal strategies. Suppose a goal-subgoal strategy is
given to the system by a statement
GOAL <patterr> SUB <pattern 1>,..,,,<pattern N>,
and the verification condition to be proved is
AlA...AAN = ClAa...ACH.
If CI matches to < atterns, then

AlA,..AAN = cpattern 1> ..., AlA...~AN o <pattern N>

are set up as a dis juncuion of subproblems successively, until one of them is proved to be "True”. If

the proof 1s successful the problem is reduced to

AlAa...AAN = ClA...ACI-1ACT+1A...ACHM,

(vi1) The logic symbol elimination algerithm works on ehmination of logic symbols "v" and ">"
from the antecedent of the statement. Their functions are explained by inference rules as shown

below.

AnanB - C AnBAB - C
(v-elimination)

AnlavB)nB « C

An~unB = C AnBAB « C

AnfooflnB » C

{>-elimination)

These seven functions are applied serially. But the simplification may be applicable after
reducticn by goal-subgoaling. So these functions are iterated several times. The user can specify the

number of iterations.

The overall structure of the prover is as follous.

Unconditional
Simplifier

I
¥

I
| Conditional Simplifier

| (Recursively activates the Depth of recursive search
| has a fixed bound which

| can be altered before

| running the system,

v

prover)

Goal-Subgoaler
(Recursively activates the
prover)

| Prover |
| |

I
------------------------ -o]
I |
I
I
| Repeat
[2or 3
| Times |
I I
I
|
| | 1t v or
| ¥ > exists |
I | I |
| | Arithmetic | ¥
! | Simplifier | [EXIT
I I I v
I I I |
[¥ | Logic |
			Symbol
	Equality		Elimiration
	Substitution		Algorithm
I Algorithm			
I !	I		
I I Vv			
I v I			
[Prover
[Truth Value		
	Substitution		
	Algorithm		
I			
I	v		
[¥ EXIT			
I			
I			
I			
I			
!			
I			
I			
I			
I			
I			
!			
!			
I			
!			
I			
I			

[T P MM
F 1
2
1L
Y. Application to Sorting Programs
r
As the fiurst example, the verification of a simple sorting program which successively finds the
largest element among the unordered part of the array and puts it at the end of the ordered part is
| considered. This program 1s the one considered by King(10). The program with input z..d output
1 4
i conditicns and an assertions about locp invariants is shown below. This is the actual input form for
; the system.
(4
I PASCAL

TYPE SARRAY=ARRAY([1:L] OF INTEGER;

PROCEDURE EXCHANGESORT (VAR A:SARRAY;L:INTEGER);
INITIAL A=AD;

v ENTRY 1<L:
EXIT lesortedarrayof (A, AB);

VAR X:REAL:VAR K, 1,J: INTEGER;

| ?EEIN
INVARIANT Pernutation(A,AB)AOrdercc (A, 1+1,L)APartitioned(A, 1) A(l21)
WHILE 1>1 D3
BEGIN
Je2iXeAll) iK1
INVARIANT Biggest (A, J-1,K)a{isK)Aa{Ks)-11A{J=-1<])A(X=A[K])
WHILE J<] 00

BEGIN
IF X2A({J] THEN GOTO 3:
XeAlJ):
KeJ;
KFNENES
ENO;
AKI=ATT]:
A1) eX;
[«1-1
END;

END; .

We are going to explamn the intended interpretation of symbols and the set of axioms defining
' them When we express axioms, we have to be careful not to introduce an inconsistent set. Since a
consistent set of axioms has a mode!, we can avoid introducing an inconsistent set by defining an

interpretation and jusufying axioms by showing validity relative to that interpretation.

Inputs to this program are an array A and an integer parameter L defining the upper bound

17

of the array. Since we have an array with at least one element, the input condition s
Izl
The output cundition 1s
lccortedarrayof (A, ADY,
where AD 15 the inual value of A at the entrance to the procedure and |ssortedarrayof (A, AB)

means that AQ 15 sorted to become A.

1. Issortedarrayof(A,B).

In order A to be a sorted array of B, it must be ordered in ascending order and it must consist
of all the elements of B and nothing else. We describe the two facts by introducing additional
predicates. The axiom 1s,

Ordererd(A,1,L)APermutation(A,B)>lssortedarrayof(A,B).

2. Ordered(A, J.L)

The nterpietation of Ordered(A,J,L) is that the subarray A[J:L] is ascendingly ordered.
Thus,

Ordered(A,J,L) %= VX, (JsX<L-12A[X] sA[X+1]},
where x- means that the left-hand side 1s the shorthand notation of the right-hand side.

Three axioms are necessary to specify the predicate. The first one specifies the boundary case
when J 15 equal to L+1. Then there is no element in the subarray and an empty array is ordered. So

Ordered (A, _+1,L)
15 true.

The next axtom 1s an duction axiom which state that if the property holds for a smaller
subarray it holds for a larger subaiiay under certain conditions. It 1s

Or dered(A, J,L)APar titioned (A, J-1)20rdered (A, J-1,L) .
This axiom enables the property to be extended to the whole array. The meaming of
Partitioned(A, -1) 15 that the array A 1s parutioned between J-1 and J such that all the
elements n the upper half are larger than or equal to all the elements in the lower half.

The last axiom states that changing elements outside of the concerned subarray will not

18

change the property. The operation on the array in this program is Exchange {A, I, J), which is an
array obtamed by exchanging I-th and J-th element of A, thus
Ordered(A,J,LYallg))Aa(KsJ)APartitioned(A, J)
>0rdered{Exchange (A, | ,K},J,L).

! 3. Partitioned(A,).

The meaning of this predicate has been stated before as

Partitioned(A,J) x- VX, Y, (1sXsJ<YsLoA (X <A (Y]),

There are also three axioms to specify this predicate with the same nature as those of
Ordered(A,J,L).

When] is equal to L, there is no element in the upper half of the array, so the property
holds. Thus, the boundary property is

Partitioned(A,L),

The axiom about induction 1s

Partitioned(A,J)nBiggest(A,J,J)oPartitioned(A,J-1).
Since Bigyest(A,J,J) means that A[]] 1s the biggest element among elements of the subarray
A[1:]], there 15 a separation between J-1 and J.

Also 1f we exchange elements of the lower half of the array the property remains valid. So,

Partitioned(A,J)all<JlAa(KsJ)oPartitioned(Exchange (A,1,K),J).

4 Biggesi(A L))

The meaning of this predicate is that, A[J] 1s the biggest element among the elements of the
subarray A[1.1]).

The axtom of the boundary case states when [1s equal to |. Then, there is one elernent in the
subarray which is the biggest element. Thus,

Biggest(A, 1,110,

The axioms about the induction are

Bigaest (A, I, J)a(A[J)2A[1+1))oBiggest (A, 1+1,))

Biggest (A, 1,J)a(Al1+1)2A0J)}oBiggest (A, 141,141},

The next axiom states that if we move the biggest element by Exchange, then the place of the

' biggest element changes The objective of the program is to move the biggest element of subarray
A[1:1) to A[l). Thus, the axiom
I Biggest(A,1,J)oBiggest (Exchange(A,J,1},1,1),
’ 15 sufficient.
5. Permutation(A,B).
¢ The meaning is that the array A 15 a permutation of the array B.

If we exchange elements of an array, this 1s a permutation of the array.
Thus,
Permutation{Exchange(A,l,J},A)
1s an ax.om. Also Permutation(A,B) 1s an equivalence relation, so
Permutation{(A,A}, and
Permutation{A,B)>Permutation(B,A}, and
Permutation(A,B)APermutation(B,C)oPermutation(A,C),

are axioms. Since any permutation can be obtained by repeated operations of Exchange, these are

sufficient axioms to prove the property.

6. Exchange(A L))

The axiom sufficient to represent that any N-place cycle is decomposable into N Exchanges is

YaA[J)oeccA, 1,Y>,J, X>=Exchange (<A, [, X>,1,J).

The following listing 1s the oalfile which is supplied to the system along with the program.

This shows how simplification and goal-subgoaling rules are selected to represent axioms.

k GOALFILE
E GOAL Issortedarrayof(@A,@B) SUB Permutation(A,B)AOrdered(A,1,L)}

' AXIOM Ordered{A,L+1,L)«TRUE;
? GOAL Ordered(eh,eP1,L) SUB Ordered(A,P1+1,L)APartitioned(A,Pl1);
GOAL Ordered{Exchange (@A, ePl,eP2),eP3,L)
SUB (P1<™3)A(P2<P3) AOrdered(A,P3,L)APartitiuned(A,P3);

AXI10M Partitioned(A,L)«TRUE;
GOAL Partitioned(eA,eP1} SUS Bi?gest(A.P1+1.P1+1)APartitioned(A.P1+l):
GOAL Partitioned(Exchange(eA,ePl,eP2),eP3)

y SUB (P1<P3)A(P2<P3)APartitioned{A,P3);

AXIOM Biggesti{A,1,1)«TRUE;

GOAL Biggest(Exchange (@A, ePl,eP2),eP2,eP2) SUB Biggest(A,P2,P1);
GOAL Biggest(eA,eP2,eP1) SUB (A[P1]2A[P2))ABiggest(A,P2-1,P1);
GOAL Biggest (®A,eP2,eP2) SUB (A[P2]12A[P1]))ABiggest (4,P2-1,eP1);

AXI0M Pernutationl(el,el)«TRUE:
AXIOM Permutation{Exchange (ell,el2,e@!3),e]l1)«TRUE;
GOAL Permutation(eA,eB) SUB Permutation(A,eC)aPermutation(aC,B);

AXIOM IF Y=P1(P3] THEN
g <<ePl,eP2,eY>,eP3, eP4>wExchange (<P1,P2,P4>,P2,P3) ;

GOAL B < ePl+eP2 SUB (8<P1)Aa(Q<P2);

) | GOAL @PlzeP2 5UB(P1<eP3)A(eP3<P2);
- AX10M @Pl<eP2 « Pl+1sP2;

21

-
] o

This 1s the output of computation which verified the progran. in 19 seconds.

THERE ARE 4 VERIFICATION CONDITIONS

g}

(1<L

-

Permutation(A,A) &
Ordered(A,L+1,L) &
Partitioned(A,L) &
1<L &

(-1<1#41 &
Permutation (A#l,AY &
Ordered (A%, '#1+1,L)
Partitioned(A#1,#1)
1<141

&
]

Issortedarrayof (A#1,A)))

2

(1<] &
Permutation(A,AB) &
Ordered(A,1+1,L) &
Partitioned(A,1) &

J#3-1<1 &
X#3=A[K#3]

Permutation(<<A,K#3,AL1>, i, Xi3. AB) & :
Ordered(<<A,KH#3,Al1)>,1,X#3>,1-141,L) &]
Pa?t;;ioned(<<A.K#3.A[I]>.].X#3>.]-1) 8

1<1-1))

—~

[y]

{
]
ggest (A, J-1,K) &

NRe—r—1
Qc O

X X+—m
o1 AIA -

—IN

Biggest(A,J+1-1,J) & 1
1<J &
JeJ+1-1 & 3
J+l-1<] & 1
AlJI=A(J]) ,

22

iggest (A, J+1-1,K) &
K &

KsJ+l-1 &

J+l-1<1 &

X=A[K))

AFTER SOME SIMPLIFICATION, YOU CAN GET

#1l
TRUE

H2
TRUE

3
TRUE

4
TRUE

KKAHK
TIME: 19 CPU SECS, 21 REAL SECS

778 STATE STACK CELLS USED
136 TOKEN STACK CELLS USED

958 DECISION POINTS
1947 FAILURES
3 SECS GC TIME

23

Here is another sorting program whicn has been verified. This is Floyd's TREE SORT

¢ program[4] with assertiore and the goalfile. This 1s verified with 142 seconds of computation time.

Most of the previously defined predicates are used in the goalfile with the same set of axioms. Thus

there 1s a possibility of forming a standard set of symbols and axioms.

PASCAL

PROCEDURE TREESORT3 (VAR A: TREEARRAY;L:INTEGER);
INITIAL A=AB;

ENTRY L22;

EXIT Issortedarrayof (A, AB);

PROCEDURE SIFTUP (VAR M:REAL ;1,N:INTEGER);

INITIAL !=18,M=M0;

ENTRY Treeordered(M,1+1 ,N)a(l21):

EXIT Treeordered({M,18,N)aPermutation(M,M8)A
Unchanged(M,M8,1, 18-1)AUnchanged (M,M8,N+1,L) ;

VAR COPY:REAL; J:INTEGER;

BEGIN
COPY « MI1):
19: Je2x1;
IF J < N THEN
BEGIN
IF J < N THEN IF M[{J+1) > M{J} THEN J « J+lg
IF MIJ} > COPY THEN
BEGIN
Mil) « MUJY;
ASSERT Treeordered(M, 18,N}A(COPY<MIJ DIV 2))n
Permutation(<M,J,COPY>,MO) A
Unchanged (M,M8,1,18-1) A
Unchanged (M,MB,N+1,L}A
;NZJSA(JZIB)A(leal):
GO 10 19
END;

END;
M) « COPY;

END:
VAR WORK:REAL; 1:INTEGER;

BEGIN
[-L DIV 2
INVARIANT Treeordered(A, 1+1,L)a(l21)APermutation (A, AB)
WHILE 122 DO
L BcGIN SIFTUP(A,1,L): Tel-1 END;
INVARTANT Ordered(A.l+1.L)APartitioned(A.l)ATreeordered(A.Z.l)
allzl)APermutation(A, AB)
WHILE 122 DO
BEGIN
SIFTUP(A,1,1);
?O?KIAIII: AllJeAll); ATI)HORK;
¥ END
END; .

24

GOALFILE
GOAL Issortedarrayof(eA,eB) SUB Permutation(A,B)AOrdered(A,1,L):

AXIOM Permutation(el,@l)«TRUE;
AX10M Permutation{Exchange(ell,el2,e13),el1)«TRUE;
GOAL Permutation(eA,eB) SUB Permutation(A,eC)APermutation(eC,B);

AXIOM IF Y=Pl [P2]
THEN <<ePl,#P2,eY>,eP3,&P4>«Exchange (<P1,P2,P4>,P2,P3);

AXIOM Orcered(A,L+1,L)»TRUE;
GOAL Ordered(eA,ePl,L) SUB Ordered(A,P1+1,L)APartitioned(A,P1);
GOAL Ordered(Exchange (@A, ePl,eP2) ,eP3,L)

SUB Ordered(A,P3,L)A(P1<P3)A(P25P3)APartitioned(A,P3);
SUB Ordered(eY,P,L)aUnchanged(X,Y,eQ,L)A(QsP+1);
AXI0M Unchanged(eX,eX,el,eJ) «TRUE;
GOAL Unchanged (<eX,el,e.)>,aY,eK,el)

SUB Unchanged (X, Y,K,L)AQutofrange(K,1,L);

GOAL Biggest(eA,e@l,1) SUB Treeordered(A,1,1);
GOAL Biggest (Exchange (@A,el,eJ),@J,eJ) SUB Biggest(A,J,1);

COAL Treeordered(ePl,eP2,eP3)
SUB Treeordered(P1,P2+1,P3)
ABigger thanchi ldren(P1,P3,P2,P1[P2]);
GOAL Treeordered(<eM,eJ,eK>,@l],eN)
SUB Treeordered(M,I,N)aQutofrange(l,J,N);
GOAL Treeordered(ef,el,eN) SUB N<2x];
GOAL Treeordered(<eM,eJ,eK>,el,eN)
SUB Treeordered(M,[,N)aSmal |er thanparent (M,1,J,K) A
Bigger thanchi ldren(M,N, J,K) ;
GOAL Treeordered(Exchange (eA,el,eJ),eK,cl)
SUB Treeordered(A,eM,eN)a(K=l+1)Aa(L=J-1)n(MsK)A(N2L);

GOAL Outofrange (el,@J,eN) SUB J<l , N<J;

GOAL Smal ler thanparent (eM,el,eJ,ekK)
SUB J<2xI, (K=M[J DIV 21) ,K=M[2%xJ] ,K=M[2%xJ+1]

GOAL Biggerthanchildren(eM,eN,aJ,eK)
SUB N<2%xJ , (N=2xJ)A(K2M[N]) , (K2M[2%J))A(K2M[2%J+1]);

AX10M Partitioned(A,L)«~TRUE;
GOAL Partitioned(eA,ePl) SUB Partitioned(A,Pl+1)ABiggest (A,P141,P1+1);
GOAL Partitioned(Exchange (@A,ePl,eP2),eP3)
SUB Partitioned(A,P3)A(P1<P3)A(P2sP3);
GOAL Partitioned(eX,eP)
SUB Partitioned(eY,P)aUnchanged(X,Y,eQ,L)A(QsP+1);

AXIOM (eKxeL)DIV eK « L;

AXIOM eKxlel DIV eK) » L;

AXIOM IF M+l<K THEN ((aKxel)+@M)DIV &K « L;
COAL ePl < ®P2 DIV «P3 SUB P1xP3 < P2;

GOAL B < ePl1+@P2 SUB (B<P1)a(B<P2);

GOAL ePlzeP2 SUB(P1<eP3)a(eP3<P2);

AXIOM @Pl<eP2 « Pl+1<P2;

25

This is Hoare's FIND program(7) and goalfile. This program is verified with 53 seconds of

computation time.

PASCAL

PROCEDURE FIND(VAR A:FARRAY;F,K:INTEGER);
INITIAL A=AD;
ENTRY 1<F&F<K;
EXIT PARTITIONED(A,F)APERMUTATION(A,AB);

VAR M,K: INTEGER; VAR R:REAL;
BEGIN

M-1; NeK;
INVARTANT MINVARTIANT (A MYANINVARIANT (A,N) APERMUTATION (A, AD)

AMF)a(FsN)

WHILE M < N 00

19
EN

GOALFILE

O:.:

BEGIN

Re-A[F); TeM: JeN;

INVARTANT MINVARIANT (A, M) ANINVARIANT (A,N) Al INVARTANT (A, 1 ,R)

AJINVARIANT (A, J,R) APERMUTATION(A,AB) A (M1 1 A (N2J)
WHILE i<J 00

BEGIN

INVARTANT TINVARIANT (A, I,R)A(M<])

WHILE A(lI] < R DO < I41;

INVARTANT JINVARIANT (A, J,R) A (N2J)

WHILE R < A(J] DO J « J-1;

IF 1 < J THEN
BEGIN
WeA 1) ATIIATJY s ALJ) el
lel4ly JeJ-1
END
END;
IF F <J THEN N~J ELSE IF IsF THEN Me] ELSE GO TO 10
END;

AXIOM PERNMUTATION(=1,el)«TRUE;
AXT0M PERMUTATION (EXCHANGE (eil,el2,el3),el1)«TRUE;
GOAL PERMUTATION(eA,eB) SUB PERMUTATION(A,eC) APERMUTATION (eC,B) ;

AXIOM IF Y=Pl (P2]
THEN <<ePl,eP2,eY>,eP3,eP4>«Exchange (<P1,P2,P4>,P2,P3)}

GOAL PARTITIONED(eA,@l) SUB MINVARIANT (A, I} ANINVARIANT (A, 1) ;
AXI0OM MINVARIANT(eA,1) « TRUE; -
GOAL MINVARIANT (@A, M)

SUB_TINVARIANT (A, e, @X) AJINVARIANT (A, @J, @X) a{l2J+1) A (12M) A (M2J) ¢
GOAL MINVARIANT (EXCHANGE (eA,@l,@J),eM) SUB MINVARIANT (A, M)A (12M) A (J2M) ¢
AX10M NINVARIANT (eA,K) « TRUE;
GOAL NINVARIANT (@A, eN)

SUB TINVARIANT (A, el,@X)AJINVARIANT (A, ed,eX)n{l2J+1) A (12N} A (N2J) ¢
GOAL NINVARIANT (EXCHANGE (@A, el ,@J),@N) SUB NINVARIANT(A,N)A(]sN)A(J<N) s

26

GOAL TINVARIANT (eA,e], A leJ]) SUB MINVARIANT (A, 1) A (J21) ;

GOAL JINVARIANT (2A, o], eJ) SUB]]NVAR]ANT(A.@K.J)A(@K-]-l)A(JZA[OK])}
GOAL]]NVARIANT(EXCHANGE(@A.el,@J).@]+1.@R)

SuB llNVAR]ANT(A.].R)A(lsJ)A(RzA[J]):
GOAL JINVARIANT (eA,el, @A leJ]) SUB NINVARIANT (A, 1} A(Js<]) g
COAL JINVARIANT (eA,el,eJ) SUB J]NVAR]ANT(A.eK,J)A(@K-l+l)A(JsA[oK]);
GOAL JINVARIANT (EXCHANGE (@A, @], @J),@J-1.eR)

SuUB JINVARIANT (A, J,RIn(1<J) A(R<ALI]):

AXIOM ¢A<B « A+1<B:
GOAL wPlzeP?2 SUB(P1<eP3) A{aP3<P2) ;
AXIOM IF P1<P2 THEN eP2<@P] w Pl=P2;

Von Henke and Luckhara have verified other programs using this system. Also a detailed

study of the verification method has been performed.[5]

Acknowledgements The author 1s gratefu! to David C. Luckham, who helped a great deal in writing
this paper and in developing the system. Also, he 1s grateful to Friedrich W. von Henke and Jorge

Morales for their advice and comments during the development of the system.

27

A O 2w win v«
’
’
l.
2
r
3
4.
¢
5.
i 6.
7
8.
9.
10.
1.
v
L

e |

References

RS. Boyer and].S. Moore, "Proving Theorems about LISP Problems",
Third 1JCAI Proceedings, 1973.

Deutsch, L. P., An Interactive Program Verifier, Ph. ID. thesis,
University of California, Berkeley, 1973.

R. W. Floyd, "Assigning Meanings to Programs”, Proc. Symp. Appl.
Math., Amer. Math. Soc,, Vol. 19, 1967, 19-32.

R. W. Floyd, "Algorithms 245. TREESORT 3", CACM, Vol 7, 1964,
Dec., 701.

F.W. von Henke and D.C. Luckham, 4 Methodology for Verifying Programs,
forthcoming AIMEMO, Stanford Artificial Intelligence Pro ject, Stanford
University, 1974.

C.AR. Hoare, “An Axiomatic Basis for Computer Programming”, CACM,
Vol. 12, 1969, Oct., 575-580.

C.AR. Hoare, "Proof of a Program: FIND", CACM, Vol. 14, 1971,
Jan., 39-45.

C.AR. Hoare and N. Wirth, “An Axiomatic Definition of the Programming
Language PASCAL", Acta Informatica 2, 1973, 385-355.

S. Igarashi, R.L. London, and D.C. Luckham, "Automatic Program
Verification I: Logical Basis and Its Implementation”, AIM-200,
Stanford Artificial Intelligence Project, Stanford University, 1972.

J.C. King, A4 Program Verifier, Ph.D. thesis, Carnegie-Mellon
University, 1969.

R. Milner, Logic for Computable Functions: Description of a Machine

Machine Implementation, AIM-200, Stanford Artificial Intelligence
Project, Stanford University, 1972.

28

